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Abstract

Galilean invariance is one of the key requirements of many physical models adopted in
theoretical and computational mechanics. Spurred by recent research developments
in shock hydrodynamics computations [16], a detailed analysis on the principle of
Galilean invariance in the context of SUPG operators is presented. It was observed in
[16] that lack of Galilean invariance can yield catastrophic instabilities in Lagrangian
computations. Here, the analysis develops at a more general level, and an arbitrary
Lagrangian-Eulerian (ALE) formulation is used to explain how to consistently de-
rive Galilean invariant SUPG operators. Stabilization operators for Lagrangian and
Eulerian mesh computations are obtained as limits of the stabilization operator for
the underlying ALE formulation. In the case of Eulerian meshes, it is shown that
most of the SUPG operators designed for compressible flow computations to date are
not consistent with Galilean invariance. It is stressed that Galilean invariant SUPG
formulations can provide consistent advantages in the context of complex engineering
applications, due to the simple modifications needed for their implementation.
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Chapter 1

Introduction

The Galilean invariance principle states that the form of the equations of motion of
an isolated system should be invariant when a change of observer, consisting of a
translation with constant velocity V G, is applied.

In the case of numerical computations, it is advisable for the discretized equations
of motion to maintain the same invariance properties of the continuum. Bubnov-
and Petrov-Galerkin finite element methods are obtained by enforcing the so-called
Galerkin orthogonality property, which states that the equations of motion (i.e., the
residual) must be orthogonal to the test function space. In this case, the Galilean
principle readily translates into the requirement that the residual must remain orthog-
onal to the Bubnov- and Petrov-Galerkin test spaces, after a Galilean transformation
is performed. It is straightforward to prove that if the equations of the continuum are
invariant, so are the discrete equations generated by a Bubnov- or Petrov-Galerkin
method. This is due to the fact that the constant velocity V G factors out of all the
integrals in the variational statement, as will be clear from the discussion in chapter
7.

SUPG and variational multiscale stabilized methods [8, 10, 11, 12, 13, 14] can be
interpreted as Petrov-Galerkin methods in which the test space depends on the local
structure of the partial differential equations simulated. A typical stabilized method is
derived from the corresponding Bubnov-Galerkin method by perturbing the test func-
tion space on element interiors. The stability properties of SUPG-stabilized methods
depend on the structure of the test function perturbation. In this case, invariance of
the test function perturbation has to be ensured to avoid the paradox of having the
stability properties of the method depending on the observer. As was shown in [16],
“standard” stabilization procedures – which usually lack Galilean invariance – were
found to generate catastrophic instabilities when applied in compressible Lagrangian
hydrodynamics computations (see, e.g., Fig. 1.1).

More recent work of the author has been focusing on exploring the develop-
ment of SUPG-stabilized methods for shock hydrodynamics applications on arbitrary
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Lagrangian-Eulerian meshes, and the question of invariance was posed again. An
important aspect of the ongoing investigation is related to what happens when the
Eulerian rather than the Lagrangian limit of the ALE equations is taken. To the best
of the author’s knowledge, the large majority of the stabilization operators developed
to date in the context of Eulerian (fixed) meshes for compressible flow computations
are not consistent with Galilean invariance.

A new approach that obviates this issue will be presented and compared to the
old approach. As a point of note, the instabilities documented in [16] manifested
themselves whenever the inconsistent terms became predominant in the stabilization
operator, while were absent in all other conditions. Therefore, it is quite possible that
a milder form of such instabilities might have been experienced by other researchers,
and erroneously attributed to “weakenesses” in the design of the stabilization tensor
τ , whose definition has a substantial degree of arbitrariness. This statement cannot
be made more precise, and may be considered as the author’s “reasonable doubt”.

It will be shown that, for certain definitions of the set of solution variables, con-
formity with Galilean invariance can be achieved by a number of straightforward
simplifications, which imply a conspicuous reduction in the computational cost of
the stabilization operator. As will become clear from the forthcoming discussion, it
is easier and computationally more efficient to develop Galilean invariant stabilized
operators, which, in addition, have the potential for improved reliability in complex
geometry, multi-physics applications.

Since SUPG methods have proved to be a well-established and reliable tool for
compressible flow simulations, questions about the importance of Galilean invariance
may arise. An answer to these concerns is provided in [16], where the pitfalls caused
by neglecting the main principles of physics are carefully presented and analyzed.
Consequently, one should always wonder whether to take risks on invariance issues,
considering the ever-increasing level of complexity of modern numerical computations.

The rest of the material is organized as follows: A very general discussion of the
issue of Galilean invariance in the context of ALE equations and its Eulerian and
Lagrangian limits is presented in chapter 2. The ALE description of the kinematics
of motion is developed in chapter 3. Chapter 4 presents an example of the invariance
issue in the context of a one dimensional scalar advection equation, and a brief survey
of Galilean invariant SUPG methods for incompressible flows. A stabilized space-
time variational formulation of the ALE compressible Euler equations is developed
in chapter 6. Chapter 7 presents an analysis of the invariance properties of the
residuals and their effect on the approximation to the subgrid-scale solution. In
chapter 8, a Galilean consistency analysis shows that standard SUPG formulations
for compressible flows yield a non-invariant test function space. A new, invariant
approach is also developed, and its advantages are analyzed in detail. Conclusions
are summarized in chapter 9.
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Figure 1.1. Results from the computations from [16]. Mesh
distortion plot: The color scheme represents the pressure.
Above: SUPG formulation violating Galilean invariance. Be-
low: SUPG abiding the Galilean invariance principle. A clas-
sical quadrilateral Saltzmann mesh is used in an implosion
computation. The initial velocity is of unit magnitude and
directed horizontally from right to left, except the left bound-
ary which is held fixed. The initial density is unity and the
initial specific internal energy is 10−1. A shock forms at the
left boundary and advances to the right. Note the mesh

coasting phenomenon on the top right corner of the upper
domain, absent in the SUPG formulation satisfying Galilean
invariance, below.
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Chapter 2

Galilean transformations in the
ALE context

This section presents an overview on how Galilean invariance applies to SUPG formu-
lations in various reference frames. In order to explore the computational implications
of the Galilean principle, we need to think about the mesh as a (possibly moving)
laboratory which is used to sample the numerical data. In this sense, we cannot com-
pletely separate the numerical aspects from the physics of the problem, since SUPG
forces act to stabilize advection and pressure perturbations across the mesh.

With respect to the Eulerian (current configuration) reference frame, a Galilean
transformation can be expressed by the affine mapping

G : R
+ × R

nd × R
nd −→ R

+ × R
nd × R

nd (2.1)
[

t xT vT
]T 7→

[

t̃ x̃T ṽT
]T

(2.2)

or, in matrix form,





t̃
x̃

ṽ



 =





1 01×3 01×3

−V G I3×3 03×3

03×1 03×3 I3×3









t
x

v



−





0
03×1

V G



 (2.3)

which can be easily inverted as





t
x

v



 =





1 01×3 01×3

V G I3×3 03×3

03×1 03×3 I3×3









t̃
x̃

ṽ



+





0
03×1

V G



 (2.4)

and consists of a spatial coordinate shift by V Gt. Therefore, if x represents the
coordinate in the original reference frame, and x̃ the coordinate in the transformed
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v v̂ v v̂ṽ ˜̂v

−V G−V G

Figure 2.1. Sketch of a Galilean transformation for a
generic ALE mesh. Left: A material domain, and the cor-
responding mesh (the red grid), are moving with velocity v
(black arrow) and v̂ (red arrow), respectively. Left: After a
Galilean transformation is applied, the material and the mesh
are moving with velocities ṽ = v − V G and ˜̂v = v̂ − V G, re-
spectively. The relative velocity of the material with respect
to the mesh is an invariant: c̃ = ṽ− ˜̂v = v−V G − v̂+V G =
v − v̂ = c.

reference frame, x̃ = x−V Gt indicates that the coordinate x̃ is shifted by V Gt with
respect to the coordinate x. Analogously, ṽ = v − V G, while the time coordinate is
unchanged. Galilean transformations are routinely used to check the consistency of
models in physics and computational sciences. In particular, a well-designed model
or numerical scheme must be invariant to Galilean transformations. This can be
symbolically expressed by saying that any generalized functional form M representing
a model, either physical or numerical, should transform as

M(v,x, t, . . . )
G−→ M(ṽ, x̃, t̃, . . . ) (2.5)

If a mesh is used to discretize a spatial domain by a computational model, Galilean
transformations apply to both the mesh and the domain, and the relative velocities
between the mesh and the domain are preserved. This simple observation has clear
implications when considering the Galilean invariance properties of SUPG formula-
tions. For example, in the generic ALE context (see Fig. 2.1), an invariant SUPG
perturbation to the Bubnov-Galerkin test function can only depend on thermody-
namic variables and their gradients, the difference c between the material velocity v
and the mesh velocity v̂, and derivatives of the velocities and position vectors, the
only invariant quantities.

In the Lagrangian limit the mesh is tied to the material (v = v̂, i.e., c = 0, see
Fig. 2.2), and the absolute velocity of the material v cannot enter the expression for
the SUPG perturbation to the test space.

14



v ≡ v̂ v ≡ v̂ ṽ ≡ ˜̂v

−V G

Figure 2.2. Sketch of a Galilean transformation for a
Lagrangian mesh. Left: A material domain, and the cor-
responding mesh (the red grid), are moving with the same
velocity v ≡ v̂ (black arrow). Left: After a Galilean trans-
formation is applied, the material and the mesh are moving
with velocity ṽ ≡ ˜̂v = v − V G = v̂ − V G. Therefore a La-
grangian mesh is transformed into a Lagrangian mesh by a
Galilean transformation.

v

v̂ = 0

v ṽ

˜̂v = −V G

−V G

Figure 2.3. Sketch of a Galilean transformation for an Eu-
lerian mesh. Left: The material is moving with velocity v,
while the mesh is fixed (v̂ = 0). Left: After a Galilean trans-
formation is applied, the material is moving with velocity
ṽ = v − V G and the mesh is undergoing a rigid body trans-
lation with velocity ˜̂v = −V G. Therefore a motionless mesh,
after transformation, assumes uniform translational motion.
However, c̃ = ṽ− ˜̂v = v−V G +V G = v = c, as for a generic
ALE mesh.
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In the Eulerian limit, the mesh, seen from the transformed coordinate system,
is moving with constant velocity −V G (see Fig. 2.3). Therefore, an Eulerian mesh
transforms into a uniformly moving mesh after a Galilean change of coordinates is
performed. This situation is not paradoxical, but a simple consequence of the general
principle of invariance applied to the ALE framework.

Remark 1 Developing SUPG operators for Eulerian meshes is somewhat problem-
atic, since it is not possible to discern from the equations whether the meaning of “v”
is v − v̂ = v − 0 = c, a relative velocity, or simply v, the absolute material velocity.
In this sense the best way to develop SUPG operators for Eulerian computations is to
start from the ALE formulation and then take the limit for a fixed (Eulerian) mesh.
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Chapter 3

Kinematics of motion in the ALE
context

The purpose of the present section is to fix the notation for arbitrary Lagrangian
Eulerian equations and recall a number of very important results. The notation used
in [1] is adopted in what follows, with minor differences. The reader can also refer to
[3] or [4] for further details. A point of departure in the discussion of the arbitrary
Lagrangian-Eulerian approach is to define the material (or Lagrangian), referential,
and Eulerian reference frames. Let Ω0, Ω̂, and Ω be open sets in R

nd (see, e. g.,
Fig. 3.1). The deformation ϕ is the transformation from the material to the Eulerian
reference frame

ϕ : Ω0 → Ω = ϕ(Ω0), (3.1)

X 7→ x = ϕ(X, t), ∀X ∈ Ω0, t ≥ 0, (3.2)

Here X is the material coordinate (which usually corresponds to the point vector in
the initial configuration of the body), and x is the point vector in the Eulerian frame.
Ω0 is the domain occupied by the body in the material reference frame. ϕ maps Ω0

to Ω, the domain occupied by the body in the current configuration (Eulerian frame).
It is also useful to define the deformation gradient, and the Jacobian determinant :

F = ∇Xϕ =
∂ϕi

∂Xj

=
∂xi

∂Xj

(3.3)

J = det(F ) (3.4)

The referential map ϕ̂, from the referential frame to the Eulerian frame, is defined as

ϕ̂ : Ω̂ → Ω = ϕ̂(Ω̂), (3.5)

χ 7→ x = ϕ̂(χ, t), ∀χ ∈ Ω̂, t ≥ 0, (3.6)

17



Ω0

Ω

Ω̂

ϕ ϕ̂

ψ
X

x

χ

Figure 3.1. Sketch of the maps ϕ, ϕ̂, and ψ for the gen-
eralized ALE framework.

where χ is the point vector in the referential frame. Ω̂, the domain occupied by the
body in the referential frame, is mapped to Ω by ϕ̂. In addition, the mesh deformation
gradient and the mesh Jacobian determinant are defined as:

F̂ = ∇χ ϕ̂ =
∂ϕ̂i

∂χj
=
∂xi

∂χj
(3.7)

Ĵ = det(F̂ ) (3.8)

The referential frame of reference lies on a mesh which is not fixed in space (Eule-
rian) nor attached to the material (Lagrangian), but moves in time with an arbitrary
motion. The transformation from the material to the referential frame will also be
needed, namely

ψ : Ω0 → Ω̂ = ψ(Ω0), (3.9)

X 7→ χ = ψ(X, t), ∀X ∈ Ω0, t ≥ 0, (3.10)

The definition of the referential deformation gradient reads

∇Xψ =
∂ψi

∂Xj
=

∂χi

∂Xj
(3.11)
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Displacements can then be defined as

u = ϕ(X, t) − ϕ(X, 0) = x(X, t) −X (3.12)

û = ϕ̂(χ, t) − ϕ̂(χ, 0) = x(χ, t) −X (3.13)

with the practical assumption, χ(X, t = 0) = X . The referential displacement û is
the displacement undergone by the mesh. Analogously, material and mesh velocities
can be defined:

v =
∂x

∂t

∣

∣

∣

∣

X

=
∂u

∂t

∣

∣

∣

∣

X

= u̇, (3.14)

v̂ =
∂x

∂t

∣

∣

∣

∣

χ

=
∂u

∂t

∣

∣

∣

∣

χ

(3.15)

Using the chain rule, it is possible to derive two very important expressions for the
Lagrangian time derivative of a scalar-valued function f :

ḟ(χ, t) =
∂f

∂t

∣

∣

∣

∣

χ

+w · ∇χf =
∂f

∂t

∣

∣

∣

∣

χ

+ c · ∇xf (3.16)

where ∇χ and ∇x are the gradients in the referential and Eulerian frames, respectively.
w = ∂tχ|X= ψ̇(X, t) = χ̇ is the particle referential velocity, that is the velocity of
a material point seen from the referential frame. The convective velocity c is the
velocity of the material relative to the mesh, and is related to w through

c = v − v̂ = F̂w (3.17)

or, in index notation, ci = vi − v̂i = F̂ijwj, with F̂ij = ∂χj
ϕ̂i(χ, t) = ∂χj

xi.

3.1 Limit behavior

In the Lagrangian limit, χ ≡ X, v̂ = v, and F̂ ≡ F , ∀t, so that w = χ̇ = Ẋ = 0,
and, in addition, c = F̂w = 0.

In the Eulerian limit, χ ≡ x, v̂ = 0, and F̂ ≡ I, ∀t, so that w = χ̇ = ẋ = v,
and, in addition, c = F̂w = Iw = w = v.
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Chapter 4

Preamble: Linear scalar advection
equation in one dimension

The discussion in the case of compressible flow equations will involve a large number
of algebraic manipulations. However, the issues object of the discussion can be easily
explained in the case of a scalar advection equation of the type

φ̇

∂φ

∂t

∣

∣

∣

∣

χ

+ w
∂φ

∂χ

∂φ

∂t

∣

∣

∣

∣

x

+ v
∂φ

∂x































= f (4.1)

where the Lagrangian, ALE, and Eulerian descriptions of motion have been adopted.
To avoid including boundary conditions in the discussion, the domains are infinite,
namely, Ω0 = Ω̂ = Ω = (−∞,∞). Assuming w and v constant (i.e., the material and
the mesh velocities are constants, possibly different from one another) the Galerkin
formulations corresponding to problem (4.1) in the three reference frames are given
by:

0 =

∫

Ω0

Ψh
(

φ̇h − f
)

dX (4.2)

0 =

∫

Ω̂

(

ψ̂h ∂φ
h

∂t

∣

∣

∣

∣

χ

− ∂ψ̂h

∂χ
wφh − ψ̂hf

)

dχ (4.3)

0 =

∫

Ω

(

ψh ∂φ
h

∂t

∣

∣

∣

∣

x

− ∂ψh

∂x
vφh − ψhf

)

dx (4.4)

where φh is the numerical approximation to φ and Ψh, ψ̂h, and ψh are the test
functions, collocated at the nodes of the Lagrangian, ALE, and Eulerian meshes,
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respectively. To fix the ideas, we can think of solving the Galerkin formulations above
in the space of continuous functions which are piecewise linear over each element of
the discretization. Let us then ask ourselves the question: “What is the correct way
of stabilizing the Galerkin discretizations (4.2)–(4.4)?” The answer is easy in this
simple case.

For the Lagrangian form (4.2), there is no advection across the mesh, and a
simple ordinary differential equation does not need stabilization. Anticipating a later
discussion, the case of compressible Euler equations is more complicated, since there
is still no advection of material across the computational grid, but acoustic waves do
propagate through the mesh and need stabilization.

For the ALE equation (4.3), the advection is given by the particle referential
velocity w, and, applying the SUPG method originally developed by Brooks and
Hughes in [2], the stabilization term reads:

SUPG(ψ̂h, φh) =

nel
∑

e=1

∫

Ω̂e

(

w
∂ψ̂h

∂χ

)

τe

(

∂φh

∂t

∣

∣

∣

∣

χ

+ w
∂φh

∂χ
− f

)

dχ (4.5)

where a typical choice for τ is given by (see also the recent, concurrent work of
Masud [15])

τe =

(

(

2

∆t

)β

+

∣

∣

∣

∣

2w

∆χe

∣

∣

∣

∣

β
)

−1/β

(4.6)

with β ≥ 1. ∆χe is the element length of the referential mesh.

Remark 2 The perturbation to the test function, w∂χψ̂
hτe, is clearly invariant. There-

fore, for this simple example, the Petrov-Galerkin method generated by the SUPG ap-

proach is invariant at the discrete level. Notice that the residual ∂φh

∂t

∣

∣

∣

χ
+w ∂φh

∂χ
− f is

also invariant. For more complicated sets of nonlinear equations, this last condition
may not always be verified, as explained in chapter 7.

In the Eulerian case, the advection is due to the material velocity v, and the
derivations are analogous to the ALE case:

SUPG(ψh, φh) =

nel
∑

e=1

∫

Ωe

(

v
∂ψh

∂x

)

τe

(

∂φh

∂t

∣

∣

∣

∣

x

+ v
∂φh

∂x
− f

)

dx (4.7)

τe =

(

(

2

∆t

)β

+

∣

∣

∣

∣

2v

∆xe

∣

∣

∣

∣

β
)

−1/β

(4.8)
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Remark 3 The Eulerian and Lagrangian cases are limits of the ALE case. In fact,
(4.5) vanishes for w = 0, and transforms to (4.7), for w = v.

The previous derivations are clearly consistent with the principle of Galilean in-
variance: If a Galilean transformation is applied to the Eulerian mesh, we will recover
an ALE formulation as in (4.5)–(4.6), with a transformed mesh velocity ˜̂v = −V G, so
that w̃ = ṽ− ˜̂v = v−V G +V G = v. With these substitutions, the transformed SUPG
operator is exactly identical to the original Eulerian SUPG operator, and for a very
important reason: it is the advection relative to the mesh that needs stabilization, and
not the absolute advection.

Remark 4 It would have been utterly incorrect to say that for the transformed Eu-
lerian case, the form of (4.7)–(4.8) would hold unchanged, with ṽ in place of v. In
this case, the SUPG operator would change even if the advection relative to the mesh
were unchanged: This is the key point of the entire discussion.

Remark 5 It is clear that if a general approach needs to be developed, it is crucial to
start from the ALE equations and take Lagrangian and Eulerian limits, rather than
trying to generalize a concept developed for the Eulerian equations. For additional
considerations on stabilization issues in the ALE context, see [15].
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Chapter 5

A brief survey on stabilized
methods for incompressible flow

Although the present work is mainly focused on compressible flows, it is worthwhile
to briefly discuss the incompressible case, for which all the most commonly used
stabilization techniques are Galilean invariant.

5.1 SUPG stabilization of the incompressible Navier-

Stokes equations, Brooks and Hughes [2]

Considering the incompressible Navier-Stokes equations in ALE advective form, it is
straightforward to see that Galilean invariance is preserved:

SUPG(ψ̂
h

v
; ρ,vh,w,ph) =

nel
∑

e=1

∫

Ω̂e
n

(τw · ∇χ ψ̂
h

v
) · R̂esv

(ρ,vh,w,ph) dQ̂ (5.1)

Here ψ̂
h

v
is the test function vector, and

R̂es
v
(ρ,vh,w, ph) = Ĵρ

∂vh

∂t

∣

∣

∣

∣

χ

+ Ĵρw · ∇χv + cof F̂∇χp− Ĵρg

= Ĵ

(

ρ
∂vh

∂t

∣

∣

∣

∣

χ

+ ρc · ∇xv + ∇xp− ρg

)

(5.2)

where cof F̂ = ĴF̂
−T

. In the Eulerian limit, w = v, χ = x, and the familiar
expression for the stabilization is recovered. Notice that Galilean invariance holds as
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long as

τ = τ(w, ν,∆t,∆χe) (5.3)

where ν is the physical viscosity, and ∆χe is a mesh length scale.

5.2 PSPG stabilization, Tezduyar [19]

PSPG-type terms (see, e.g., [18, 20, 19]) are also Galilean consistent. In the ALE
context, their form is:

PSPG(ψ̂h
ρ ; ρ,vh,w,ph) =

nel
∑

e=1

∫

Ω̂e
n

τPSPG

ρ
∇χψ̂

h
ρ · ˆRes

v
(ρ,vh,w,ph) dQ̂ (5.4)

where ψ̂h
ρ is the test function for the mass conservation (divergence-free velocity field

constraint), and

τPSPG = τPSPG(w, ν,∆t,∆χe) (5.5)

5.3 Advanced multiscale concepts and turbulence

[9]

Recent developments in the application of multiscale methods to stabilization and
turbulence subgrid modeling hinge upon substituting the subgrid-scale approximation

v′ ≈ −τ ˆRes
v
(vh,w, ph) (5.6)

in the Galerkin mesh-scale equations. As long as the τ parameter is in the form (5.3),
the overall approach is Galilean invariant.
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Chapter 6

ALE equations of compressible
flows

The present chapter contains the derivation and discretization of the ALE equations,
using the space-time formulation developed in [17].

6.1 Generalized Reynolds transport theorem

In order to derive useful integral forms of conservation laws, a generalized version of
the classical Reynolds transport theorem is needed. The transport theorem is simply
an integral equation between the material reference frame and an arbitrary reference
frame, which may or may not correspond to the Eulerian frame. Hence, if referential
coordinates are used,

d

dt

∫

Ω̂

fĴ dΩ̂ =

∫

Ω̂

∂(fĴ)

∂t

∣

∣

∣

∣

∣

χ

dΩ̂ +

∫

Γ̂=∂Ω̂

fw · n̂ Ĵ dΓ̂ (6.1)

Equation (6.1) can be derived noticing that it corresponds to the standard form in
Eulerian coordinates with χ in place of x and w in place of v.
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6.2 Integral form of the ALE equations in the ref-

erential coordinate frame

Applying (6.1) to the mass, momentum, and total energy, it is easily derived (see [1],
pp. 443–447):

0 =

∫

Ω̂

∂ρ̂

∂t

∣

∣

∣

∣

χ

dΩ̂ +

∫

Γ̂

ρ̂w · n̂ dΓ̂ (6.2)

0 =

∫

Ω̂

∂(ρ̂v)

∂t

∣

∣

∣

∣

χ

dΩ̂ +

∫

Γ̂

(ρ̂v ⊗w − P̂ )n̂ dΓ̂ −
∫

Ω̂

ρ̂g dΩ̂ (6.3)

0 =

∫

Ω̂

∂(ρ̂E)

∂t

∣

∣

∣

∣

χ

dΩ̂ +

∫

Γ̂

(ρ̂Ew − P̂ T
v + Q̂) · n̂ dΓ̂

−
∫

Ω̂

ρ̂(v · g + s) dΩ̂ (6.4)

where ρ̂ = ρĴ , g is the body force term per unit mass (e.g., the gravitational accelera-

tion), P̂ = ĴσF̂
−T

= σ cofF̂ , σ is the Cauchy stress tensor in Eulerian coordinates,
E = e + v · v/2 is the total energy per unit mass, e is the internal energy per unit

mass, Q̂ = (qTcofF̂ )T = (cofF̂ )Tq = ĴF̂
−1
q, q is the heat flux in the Eulerian

frame, and s is a heat source (s > 0) or sink (s < 0) per unit mass. Let us introduce
the following definitions:

Û = ĴU , U =













ρ
ρv1

ρv2

ρv3

ρE













, Ẑ =















0

−Ĵρg1

−Ĵρg2

−Ĵρg3

−Ĵρvigi − Ĵρs















(6.5)

Ĝi =















Ĵρwi

Ĵρv1wi − P̂1i

Ĵρv2wi − P̂2i

Ĵρv3wi − P̂3i

ĴρEwi − vkP̂ik + Q̂i















=















Ĵρwi

Ĵρv1wi − σ1k cofF̂ki

Ĵρv2wi − σ2k cofF̂ki

Ĵρv3wi − σ3k cofF̂ki

ĴρEwi + (qk − vjσjk) cofF̂ki















(6.6)

with i = 1, 2, 3. U is the vector of conserved variables, Û is the vector of generalized
ALE conserved variables, Ĝi is the Euler flux in the i-th direction, and Ẑ is a vector-
valued source term.
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Remark 6 Notice that

Ĝi = wiÛ + Ĝ
L

i , Ĝ
L

i =















0

−σ1k cofF̂ki

−σ2k cofF̂ki

−σ3k cofF̂ki

(qk − vjσjk) cofF̂ki















(6.7)

where Ĝ
L

i is the Lagrangian limit of the Euler flux Jacobians, as w → 0.

Equations (6.2)–(6.4) can be expressed more succinctly in vector form:

∂t|χÛ(Y ) + ∂χi
Ĝi(Y ) + Ẑ = 0 (6.8)

where the Gauss divergence theorem has been applied, as well as the fact that (6.2)–
(6.4) hold on an arbitrary domain. Y is the vector of solution variables to be specified
subsequently.

6.3 Mie-Grüneisen constitutive laws

It is assumed that the materials under consideration do not possess deformation
strength, so that the Cauchy stress tensor σ reduces to an isotropic tensor, dependent
only on the thermodynamic pressure:

σij = −p δij (6.9)

with δij, the Kronecker tensor. Mie-Grüneisen materials satisfy an equation of state
of the form p = f1(ρ; ρr, er) + f2(ρ; ρr, er)e, where ρr and er are fixed reference ther-
modynamic states. More succinctly,

p = f1(ρ) + f2(ρ) e (6.10)

If f1 = 0 and f2 = (γ−1) ρ, the equation of state for an ideal gas, p = (γ−1) ρ e, is
recovered. Thanks to the Mie-Grüneisen constitutive equations, a quasi-linear form
of (6.8) can be developed, namely,

Â0 ∂t|χY + Âi(Y ) ∂χi
Y + Ĉ(Y ) Y = 0 (6.11)

The definitions of Â0, Âi, and Ĉ will be given in chapter 8, and depend on the choice
of the solution vector Y .
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6.4 A space-time variational formulation in refer-

ential coordinates

In order to lay the foundations for the subsequent discussion, a space-time variational
formulation in the referential frame is presented. The analysis of Galilean invariance
is not strictly dependent on the variational formulation adopted, and, for example,
similar conclusions hold for alternative space-time or semi-discrete formulations. In
this paper, the approach developed in [17] for the purely Lagrangian case is extended
to the ALE equations.

Given a partition 0 < t1 < t2 < . . . < tN = T of the time interval I =]0, T ], let
In =]tn, tn+1], so that ]0, T ] =

⋃N−1
n=0 In. The space-time domain Q̂ = Ω̂ × I can be

divided into time slabs
Q̂n = Ω̂ × In (6.12)

with “lateral” boundary P̂n = Γ̂× In (Γ̂ = ∂Ω̂ is the boundary of Ω̂). A sketch of the
general discretization in space-time is presented in Figure 6.1. We will only make use
of discretizations prismatic in time. The material domain Ω̂ is further divided into
material-subdomains Ω̂e (elements in space, a partition of the initial configuration).

Thus Ω̂ =
⋃nel

e=1 Ω̂e, and, consequently, a typical space-time element is given by the
prism (i.e., tensor product domain)

Q̂e
n = Ω̂e × In (6.13)

It is also assumed that the space-time boundary is partitioned as P̂n = P̂ g
n ∪ P̂ h

n ,
P̂ g

n∩P̂ h
n = ∅ (i.e., P̂n is divided into a Dirichlet boundary P̂ g

n and a Neumann boundary
P̂ h

n ). Let us define the test and trial function spaces as follows:

Ŝh =
{

V̂
h

: V̂
h ∈ (C0(Q̂))m,

V̂
h
∣

∣

∣

Q̂e
n

∈ (P1(Ω̂
e) × P1(In))m, V̂

h
= Gbc(t) on P̂ g

n

}

(6.14)

V̂h =
{

Ŵ
h

: Ŵ
h
∣

∣

∣

Ω̂
∈ (C0(Ω̂))m,

Ŵ
h
∣

∣

∣

Q̂e
n

∈ (P1(Ω̂
e) × P0(In))m, V̂

h
= 0 on P̂ g

n

}

(6.15)

where Gbc(t) is the vector of Dirichlet boundary conditions, Pk is the set of polyno-
mials up to degree k, and m = nd + 2, nd ∈ {1, 2, 3}. The trial function space Ŝh is
given by the piecewise-linear, continuous functions on Q̂ = Ω̂×]0, T [, while the test
function space V̂h is given by functions that are continuous piecewise-linear in space
and discontinuous, piecewise-constant in time. The variational statement reads:

Find Y h ∈ Ŝh, such that ∀Ŵ h ∈ V̂h

B(Ŵ ,Y h) + SUPG(Ŵ
h
,Y h) + DC(Ŵ

h
,Y h) = F(Ŵ ) (6.16)
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Figure 6.1. General finite element discretization in space-
time.
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with

B(Ŵ ,Y h) =

∫

Ω̂

Ŵ
h
(χ) · Û(Y h(χ, tn+1)) − Ŵ

h
(χ) · Û(Y h(χ, tn)) dΩ̂

+

∫

Q̂n

(

−Ŵ h

,i · Ĝi(Y
h) + Ŵ

h · Ẑ(Y h)
)

dQ̂

+

∫

P̂ g
n

Ŵ
h · Ĝi(Y

h)n̂idP̂ (6.17)

F(Ŵ ) = −
∫

P̂ h
n

Ŵ
h · Ĥ in̂i dP̂ (6.18)

Ŵ is the vector-valued test function, n̂i is the i-th component of the normal to
the space-time boundary, and Ĥ i is the Neumann flux across the boundary in the

i-th direction. The SUPG operator SUPG(Ŵ
h
,Y h) will be defined subsequently.

The discontinuity capturing operator DC(Ŵ
h
,Y h), will be omitted in the following

discussion, which applies to regions of smooth flows, away from discontinuities.

Remark 7 The proposed formulation is second-order-in-time and, following deriva-
tions analogous to [17], it can be easily proven to embed global conservation of mass,
momentum and total energy.

6.5 SUPG Stabilization

The SUPG stabilization operator can be abstractly defined as

SUPG(Ŵ
h
,Y h) = −

(nel)n
∑

e=1

∫

Q̂e
n

(L̂∗

SHŴ h) · τ̂ R̂es(Y h)dQ̂ (6.19)

where

R̂es = L̂ = Â0 ∂t|χ + Âi∂χi
+ Ĉ (6.20)

L̂SH = Â0 ∂t|χ + Âi∂χi
(6.21)

L̂∗

SH = −ÂT

0 ∂t|χ − ÂT

i ∂χi
(6.22)

τ̂ = τ̂ (∆t, he, Â0, Âi, Ĉ, . . . ) (6.23)

30



∆t is the time increment, and he is the e-th element mesh scale. For the discussion that
follows, a precise definition of τ̂ is not needed. Instead, its functional dependence on
the parameters and various terms in the formulation is sufficient to fully understand
the issues under investigation.

Remark 8 The rest of the discussion will be focused on assessing whether or not
the perturbation to the Bubnov-Galerkin test function, −(L̂∗

SHŴ h) · τ̂ , is Galilean
invariant.

6.5.1 A multiscale view on Galilean invariance

The SUPG stabilization is obtained from a linearized multiscale decomposition of the
Galerkin discretization, according to the following equations:

B(Ŵ
h
,Y h) +

∫

Q̂n

L̂∗

SHŴ
h · Y ′ dQ̂ = 0 (6.24)

Y ′ = L̂−1
SH(−R̂es(Y h)) = −

∫

Q̂n

Ĝ
′

SH R̂es(Y h) dQ̂, in V ′(Q̂n) (6.25)

where Ĝ
′

SH is the subgrid-scale element Green’s function for the ALE equations of
shock hydrodynamics, and L̂∗

SH and L̂SH are obtained using the full Fréchet derivative
of the Galerkin residual. Ideally, Y ′ is also an invariant of the Galilean transformation,
since it is defined as the difference of Y and Y h (see [16] for the trivial proof).
However, due to the linearization, both (6.24)–(6.25) may yield second-order Galilean
inconsistencies. Consequently, when the exact solution Y ′ to the linearized subgrid
problem (6.25) is inserted into the mesh-scale equation (6.24), second-order Galilean
inconsistencies are to be expected.

Furthermore, the approximation to the Green’s function operator adopted in
SUPG methods, namely

Ĝ
′

SH ≈ τ̂ (χ; t)δ(χ̃− χ; t̃− t) (6.26)

may result too coarse in certain instances, preventing the expression for

Y ′ ≈ −τ̂ (χ; t) R̂es(Y h(χ; t)) (6.27)

to retain first- or zeroth-order invariance properties. Since Y ′ is tied to the expression
of the test function perturbation through τ̂ , stability can be at risk, as documented
in [16]. The proposed extension to the ALE equations of the approach developed in
[17, 16] is designed to remove Galilean inconsistencies from the SUPG operator, with
specific emphasis on the construction of the Petrov-Galerkin test space.
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Remark 9 In addition, it should be understood that an invariant approximation of
Y ′ may be advisable, at least from the theoretical point of view, as will be further
discussed in later sections.
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Chapter 7

Galilean invariance and the role of
the subgrid-scale solution

Before undertaking an exhaustive discussion on the construction of the SUPG oper-
ator, it is important to understand how the numerical Galerkin residuals transform.
It will be shown that for some choices of the solution variables, it is possible to main-
tain invariance properties if the residuals are in advective form, independently of the
numerical quadrature adopted. This result does not hold for any solution vector, as
will be clear in the case of conservation variables. Therefore, a key point to be made
is the following: Not all forms of the numerical, non-vanishing residuals transform
correctly.

Let us review how the Euler equations of gas dynamics transform. Namely,

0 =
∂(Ĵρ)

∂t

∣

∣

∣

∣

∣

χ

+
∂Ĵρwj

∂χj
(7.1)

0 =
∂(Ĵρvi)

∂t

∣

∣

∣

∣

∣

χ

+
∂

∂χj
(Ĵρviwj − P̂ij) − ρĴgi (7.2)

0 =
∂(ĴρE)

∂t

∣

∣

∣

∣

∣

χ

+
∂

∂χj

(ĴρEwj − viP̂ij) − ρĴvigi − ρĴs (7.3)

33



or, more simply,

0 = R̂es
ρ
(ρ;χ,w,v, t) (7.4)

0 = R̂es
ρv

i (ρ, p;χ,w,v, t)

= vi R̂es
ρ
(ρ;χ,w,v, t) + R̂es

v

i (ρ, p;χ,w,v, t) (7.5)

0 = R̂es
E
(ρ, e, p;χ,w,v, t)

=
(

e+
vkvk

2

)

R̂es
ρ
(ρ;χ,w,v, t)

+vi R̂es
v

i (ρ, p;χ,w,v, t) + R̂es
e
(ρ, e, p;χ,w,v, t) (7.6)

where the mass conservation residual R̂es
ρ
, the momentum equation advective resid-

ual R̂es
v
, and the internal energy equation residual R̂es

e
are defined as

R̂es
ρ
(ρ;χ,w,v, t) = Ĵ

∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj
+ ρ cofF̂ij

∂vi

∂χj
(7.7)

R̂es
v

i (ρ, p;χ,w,v, t) = Ĵρ
∂vi

∂t

∣

∣

∣

∣

χ

+ Ĵρwj
∂vi

∂χj
+

∂p

∂χj
cofF̂ij − Ĵρgi (7.8)

R̂es
e
(ρ, e, p;χ,w,v, t) = Ĵρ

∂e

∂t

∣

∣

∣

∣

χ

+ Ĵρwj
∂e

∂χj

+
∂vi

∂χj

p cofF̂ij − Ĵρs (7.9)

Here, the identity

˙̂
J =

∂vi

∂χj
cofF̂ij − Ĵ

∂wj

∂χj
(7.10)

has been used to rearrange the mass conservation equation (7.1) as follows:

0 = Ĵ
∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj

+ Ĵρ
∂wj

∂χj

+ ρ





∂Ĵ

∂t

∣

∣

∣

∣

∣

χ

+ wj
∂Ĵ

∂χj





= Ĵ
∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj

+ Ĵρ
∂wj

∂χj

+ ρ
˙̂
J (7.11)

= Ĵ
∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj
+ ρ

∂vi

∂χj
cofF̂ij (7.12)

Recalling that x(X, t = 0) = χ(X, t = 0) = X, it easy to verify that a Galilean
transformation applied to the referential coordinate system reads









t̃
χ̃

w̃

ṽ









=









t
χ

w

v − V G









, or,









t
χ

w

v









=









t̃
χ̃

w̃

ṽ + V G









(7.13)
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Hence,

R̂es
ρ
(ρ;χ,v,w, t)

G−→ R̂es
ρ
(ρ; χ̃, ṽ, w̃, t̃) (7.14)

R̂es
v

i (ρ, p;χ,v,w, t)
G−→ R̂es

ṽ

i (ρ, p; χ̃, ṽ, w̃, t̃) (7.15)

R̂es
e
(ρ, e, p;χ,v,w, t)

G−→ R̂es
e
(ρ, e, p; χ̃, ṽ, w̃, t̃) (7.16)

R̂es
ρv

i (ρ, p;χ,v,w, t)
G−→ ṽiR̂es

ρ
(ρ; χ̃, ṽ, w̃, t̃)

+R̂es
ṽ

i (ρ, p; χ̃, ṽ, w̃, t̃)

+V G
i R̂es

ρ
(ρ; χ̃, ṽ, w̃, t̃) (7.17)

R̂es
E
(ρ, e, p;χ,v,w, t)

G−→
(

e+
ṽkṽk

2

)

R̂es
ρ
(ρ; χ̃, ṽ, w̃, t̃)

+ṽi R̂es
ṽ

i (ρ, p; χ̃, ṽ, w̃, t̃)

+R̂es
e
(ρ, e, p; χ̃, ṽ, w̃, t̃)

+V G
i

(

ṽiR̂es
ρ
(ρ; χ̃, ṽ, w̃, t̃)

+R̂es
ṽ

i (ρ, p; χ̃, ṽ, w̃, t̃)
)

+
V G

k V
G
k

2
R̂es

ρ
(ρ; χ̃, ṽ, w̃, t̃) (7.18)

The last two equations can be written more compactly as:

R̂es
ρv

i (ρ, p;χ,v,w, t)
G−→ R̂es

ρṽ

i (ρ, p; χ̃, ṽ, w̃, t̃)

+V G
i R̂es

ρ
(ρ; χ̃, ṽ, w̃, t̃) (7.19)

R̂es
E
(ρ, e, p;χ,v,w, t)

G−→ R̂es
E
(ρ, e, p; χ̃, ṽ, w̃, t̃)

+V G
i R̂es

ρṽ

i (ρ, p; χ̃, ṽ, w̃, t̃)

+
V G

k V
G
k

2
R̂es

ρ
(ρ; χ̃, ṽ, w̃, t̃) (7.20)

As expected, the equations transform appropriately, since the terms multiplied by the
transformation velocity V G annihilate exactly. In other words, if an exact multiscale
decomposition of the solution is applied, the resulting equations would satisfy the
invariance principle.
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If, however, as already mentioned in [16], the subgrid-scale problem is solved only
approximately, the situation is different and the numerical residuals are not necessarily
invariant.

On the one hand, no matter the numerical quadrature used, the numerical ap-

proximations to the “advective” residuals R̂es
h;ρ

, ˆRes
h;v

, and R̂es
h;e

would trans-
form correctly, if, for example, the set of solution variables is given by [ρ, vT , p]T ,
[ρ, vT , e]T , or [e, vT , p]T . More generally, if v is a variable in the solution vector,
and the remaining two entries are given by functions of the thermodynamic quan-
tities, the resulting advective form of the residuals would transform correctly. It is
important to notice that, in the advective form of the residual, the velocity v appears
only in differentiated form.

Instead, R̂es
h;ρv

and R̂es
h;E

would not transform correctly, because V G multiplies
some of the non-vanishing residual terms. Hence, the approximation to the subgrid-
scale solution Y ′ ≈ −τ̂ R̂es(Y h) would not be invariant if these residuals were used
in its construction. In addition, not all solution vectors yield invariant advective
forms, as will become clear in the case of conservation variables.

It is also important to realize, however, that residuals are usually higher-order
corrections: In the computations performed in [17, 16], virtually no difference in the
results was observed between SUPG operators with and without invariant residuals
in the approximation to Y ′. The fact that instabilities were experienced only for a
non-invariant SUPG test function perturbation indicates that the latter is far more
stringent then Galilean consistency of the residual terms. Nonetheless, it should be
advisable to preserve invariance also for the approximations to Y ′.
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Chapter 8

Quasi-linear forms and invariance

Quasi-linear differential forms of the ALE equations have a central role in the design
of SUPG operators, which make use of a fairly arbitrary combination of the Euler
flux Jacobians to define a perturbation to the Bubnov-Galerkin test function space.
Hence, a key requirement to be respected is that every Euler flux Jacobian must be
invariant, or one cannot expect the perturbed test space to be independent of the
observer. In what follows, two examples will be presented.

First, the case of density-pressure variables (Y = [ρ vT p]T ) will be analyzed, and
it will be shown how to successfully address the issue of lack of Galilean invariance
affecting classical SUPG formulations. Specifically, invariance in the SUPG operator
can be recovered by using the advective form of the residuals when constructing the
Euler flux Jacobians. For the sake of completeness, the derivations in the case of the
pressure primitive variables (Y = [e vT p]T ), and density-internal energy variables
(Y = [ρ vT e]T ), are presented in appendix A.1. Pressure primitive variables are of
greater interest in the aerospace community, since they allow to span the compressible
and incompressible limit of the Euler equations. Instead, density-internal energy
variables are traditionally used in the community developing hydrocodes.

Second, the discussion will proceed with the conservation variables (U = [ρ ρvT ρE]T ).
In this case, the advective form of the residuals does not lead to invariance properties
for the Euler flux Jacobians. This fact does not imply that there is no hope to recover
invariance when conservation variables are used, rather, that a successful approach is
still to be developed.

8.1 Density-pressure variables

A quasi-linear form of the Euler equations using pressure variables (Y = [ρ vT p]T )
will be derived using the traditional Fréchet differentiation approach and the new
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minimal approach of [16]. The structure and invariance properties of the resulting
SUPG perturbations of the Galerkin test function will be analyzed.

For simplicity, heat fluxes are assumed absent. Applying the Piola identity

∂(cofF̂ij)

∂χj

≡ ∂

∂χj

(

Ĵ F̂−1
ji

)

= 0 (8.1)

to the stress terms in (7.2)–(7.3) yields

∂P̂ij

∂χj
=

∂(ĴσikF̂
−1
jk )

∂χj
=
∂σik

∂χj
Ĵ F̂−1

jk = − ∂p

∂χj
Ĵ F̂−1

ji = − ∂p

∂χj
cofF̂ij (8.2)

∂viP̂ij

∂χj
=

∂(viĴσikF̂
−1
jk )

∂χj
=
∂(viσik)

∂χj
Ĵ F̂−1

jk = −∂(vip)

∂χj
cofF̂ij (8.3)

Using (7.10),

0 = Ĵ
∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj
+ ρ cofF̂ij

∂vi

∂χj
(8.4)

0 = vi

(

Ĵ
∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj

+ ρ cofF̂kj
∂vk

∂χj

)

+Ĵρ
∂vi

∂t

∣

∣

∣

∣

χ

+ Ĵρwj
∂vi

∂χj

+
∂p

∂χj

cofF̂ij − Ĵρgi (8.5)

0 =
(

e+
vkvk

2

)

(

Ĵ
∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj
+ ρ cofF̂ij

∂vi

∂χj

)

+vi

(

Ĵρ
∂vi

∂t

∣

∣

∣

∣

χ

+ Ĵρwj
∂vi

∂χj
+

∂p

∂χj
cofF̂ij − Ĵρgi

)

+Ĵρ
∂e

∂t

∣

∣

∣

∣

χ

+ Ĵρwj
∂e

∂χj

+
∂vi

∂χj

p cofF̂ij − Ĵρs (8.6)

Remark 10 The momentum and energy equations contain the mass conservation
equation multiplied by the velocity component vi, and internal energy e, respectively.
In addition, the energy equation contains the kinetic-energy equation, the scalar prod-
uct of the velocity times the momentum equation.
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In the present case, the following identity will become very useful:

Ĵ
∂e

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂e

∂χj
= Ĵ

∂e

∂p

∣

∣

∣

∣

ρ

(

∂p

∂t

∣

∣

∣

∣

χ

+ wj
∂p

∂χj

)

+ Ĵ
∂e

∂ρ

∣

∣

∣

∣

p

(

∂ρ

∂t

∣

∣

∣

∣

χ

+ wj
∂ρ

∂χj

)

= Ĵe,p

(

∂p

∂t

∣

∣

∣

∣

χ

+ wj
∂p

∂χj

)

+ Ĵe,ρ

(

∂ρ

∂t

∣

∣

∣

∣

χ

+ wj
∂ρ

∂χj

)

= Ĵe,p

(

∂p

∂t

∣

∣

∣

∣

χ

+ wj
∂p

∂χj

)

− e,ρρ cofF̂ij
∂vi

∂χj
(8.7)

where (7.1) has been used in the last step. Here, e,p = ∂e
∂p

∣

∣

∣

ρ
, and e,ρ = ∂e

∂ρ

∣

∣

∣

p
.

8.1.1 The “standard”, non-invariant approach

The quasi-linear vector form reads

Â0(Y ) ∂t|χY + Âi(Y ) ∂χi
Y + Ĉ(Y ) Y = 0 (8.8)

with

Â
(NG)

0 =















Ĵ 0 0 0 0

Ĵv1 Ĵρ 0 0 0

Ĵv2 0 Ĵρ 0 0

Ĵv3 0 0 Ĵρ 0

ĴE Ĵρv1 Ĵρv2 Ĵρv3 Ĵρe,p















, (8.9)

Ĉ
(NG)

=















0 0 0 0 0

−Ĵg1 0 0 0 0

−Ĵg2 0 0 0 0

−Ĵg3 0 0 0 0

−Ĵs −Ĵρg1 −Ĵρg2 −Ĵρg3 0















, (8.10)
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and, for i = 1, 2, 3,

Â
(NG)

i =



































Ĵwi ρ cofF̂1i ρ cofF̂2i ρ cofF̂3i 0

Ĵwiv1 Ĵρwi+

ρv1cofF̂1i ρv1cofF̂2i ρv1cofF̂3i cofF̂1i

Ĵwiv2 Ĵρwi+

ρv2cofF̂1i ρv2cofF̂2i ρv2cofF̂3i cofF̂2i

Ĵwiv3 Ĵρwi+

ρv3cofF̂1i ρv3cofF̂2i ρv3cofF̂3i cofF̂3i

ĴwiE Ĵρwiv1+ Ĵρwiv2+ Ĵρwiv3+ Ĵρwie,p+

(ρE+p (ρE+p (ρE+p cofF̂kivk

−ρ2e,ρ)cofF̂1i −ρ2e,ρ)cofF̂2i −ρ2e,ρ)cofF̂3i



































(8.11)

Remark 11 This choice leads to Jacobians of the Euler fluxes which are not invariant
if considered separately. By inspection, it is easy to realize that there is a large number
of terms which contain components of the velocity vector v. Therefore, a single Euler
flux Jacobian or an arbitrary combination of Euler flux Jacobians are not necessarily
invariant. This is precisely the situation for the perturbation to the test function

−(L̂∗

SHŴ
h
) · τ̂ = (Â

T

0 ∂t|χ Ŵ
h

+ Â
T

i ∂χi
Ŵ

h
)τ̂ , which lacks invariance properties,

with potentially very negative consequences on the overall stability of the formulation.

Remark 12 Although in principle it is possible to develop a tensor τ̂ which would
make the perturbation to the test function Galilean invariant, it should be evident to
the reader that, in practice, the current structure of the Jacobians makes this task
extremely difficult.

Remark 13 Obviously, also the approximation to Y ′ is not invariant.

8.1.2 A new Galilean invariant approach

The previous approach is not the only way to derive a quasi-linear form of the Eu-
ler equations. Starting from (8.4)–(8.6), additional algebraic manipulations can be
performed. Let us therefore remove the mass conservation equation terms from the
momentum and total energy equations, and the kinetic energy equation from the
total energy equation. Hence, the following system of equations in advective form is
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obtained:

0 = Ĵ
∂ρ

∂t

∣

∣

∣

∣

χ

+ Ĵwj
∂ρ

∂χj
+ ρ cofF̂ij

∂vi

∂χj
(8.12)

0 = Ĵρ
∂vi

∂t

∣

∣

∣

∣

χ

+ Ĵρwj
∂vi

∂χj

+
∂p

∂χj

cofF̂ij − Ĵρgi (8.13)

0 = Ĵρ
∂e

∂t

∣

∣

∣

∣

χ

+ Ĵρwj
∂e

∂χj
+
∂vi

∂χj
p cofF̂ij − Ĵρs (8.14)

Thus,

Â
(Gal)

0 =















Ĵ 0 0 0 0

0 Ĵρ 0 0 0

0 0 Ĵρ 0 0

0 0 0 Ĵρ 0

0 0 0 0 Ĵρe,p















, Ĉ
(Gal)

=















0 0 0 0 0

−Ĵg1 0 0 0 0

−Ĵg2 0 0 0 0

−Ĵg3 0 0 0 0

−Ĵs 0 0 0 0















, (8.15)

and, for i = 1, 2, 3,

Â
(Gal)

i =















Ĵwi ρ cofF̂1i ρ cofF̂2i ρ cofF̂3i 0

0 Ĵρwi 0 0 cofF̂1i

0 0 Ĵρwi 0 cofF̂2i

0 0 0 Ĵρwi cofF̂3i

0 (p−ρ2e,ρ)cofF̂1i (p−ρ2e,ρ)cofF̂2i (p−ρ2e,ρ)cofF̂3i Ĵρwie,p















(8.16)

Remark 14 Each of the generalized advective matrices developed respects the prin-
ciple of Galilean invariance, since they are function of F̂ , Ĵ , w, p, ρ, e,p, and e,ρ, all
invariant quantities.

Remark 15 One can think about the proposed approach as being “minimalist”. In
fact it produces the minimal number of entries in the Jacobians while still retain-
ing the generalized advective structure of the quasi-linear form, now reduced to the
mass conservation equation, the advective form of the momentum equation, and the
advective form of the internal energy equation.

Remark 16 With respect to the standard Jacobians, the Galilean invariant Jacobians
require 77 fewer terms to be computed. The compact sparsity pattern is clearly notice-
able in (8.15)–(8.16). It is unusual and quite remarkable that a consistent approach
leads to a significant reduction in the computational cost.

Remark 17 In appendix A, the previous discussion is extended to the case of pressure
primitive variables, and density-internal energy variables. The conclusions that can be
drawn in these two cases are virtually identical to the present case of density-pressure
variables.
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8.1.3 The Lagrangian limit

The Lagrangian limit is very instructive in understanding the issues related to lack
of Galilean invariance.

8.1.3.1 Standard, non-invariant approach

Â
(NG)

0 =













J 0 0 0 0
Jv1 ρ0 0 0 0
Jv2 0 ρ0 0 0
Jv3 0 0 ρ0 0
JE ρ0v1 ρ0v2 ρ0v3 ρ0e,p













, (8.17)

Ĉ
(NG)

=













0 0 0 0 0
−Jg1 0 0 0 0
−Jg2 0 0 0 0
−Jg3 0 0 0 0
−Js −ρ0g1 −ρ0g2 −ρ0g3 0













, (8.18)

where ρ0 = ρ J is the initial density distribution, and, for i = 1, 2, 3,

Â
(NG)

i =

















0 ρ cofF1i ρ cofF2i ρ cofF3i 0
0 ρv1cofF1i ρv1cofF2i ρv1cofF3i cofF1i

0 ρv2cofF1i ρv2cofF2i ρv2cofF3i cofF2i

0 ρv3cofF1i ρv3cofF2i ρv3cofF3i cofF3i

0 (ρE+p (ρE+p (ρE+p cofF̂kivk

−ρ2e,ρ)cofF̂1i −ρ2e,ρ)cofF̂2i −ρ2e,ρ)cofF̂3i

















(8.19)

Remark 18 A large number of terms are multiplied by the velocity components, with
the potential for very dangerous consequences, since now a standard implementation
of the SUPG operator would generate nodal forces depending on the observer. As
documented in [16] and Figure 1.1, simulations of even mild shocks could not be
successfully completed with this approach.

8.1.3.2 Galilean invariant approach

Â
(Gal)

0 =













J 0 0 0 0
0 ρ0 0 0 0
0 0 ρ0 0 0
0 0 0 ρ0 0
0 0 0 0 ρ0e,p













, Ĉ
(Gal)

=













0 0 0 0 0
−Jg1 0 0 0 0
−Jg2 0 0 0 0
−Jg3 0 0 0 0
−Js 0 0 0 0













(8.20)
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where ρ0 = ρ J , and, for i = 1, 2, 3,

Â
(Gal)

i =













0 ρ cofF1i ρ cofF2i ρ cofF3i 0
0 0 0 0 cofF1i

0 0 0 0 cofF2i

0 0 0 0 cofF3i

0 (p−ρ2e,ρ)cofF1i (p−ρ2e,ρ)cofF2i (p−ρ2e,ρ)cofF3i 0













(8.21)

Remark 19 None of the entries in (8.20)–(8.21) depends on v. The Lagrangian
formulation presented here is slightly different from the one in [17], in which the
algebraic constraint ρ0 = ρ J is enforced strongly in the equations. This amounts to
removing the first row and column from (8.20)–(8.21). Using a diagonal τ̂ tensor,
the simulations in [17] never suffered from instabilities, even in the most demanding
implosion computations, with shock strengths exceeding Mach 10,000,000.

8.1.4 A simple example: one-dimensional, Lagrangian gas

dynamics

The effect of lack of Galilean invariance on the perturbation to the test function
can be easily appreciated in a simple one-dimensional example. Let us consider the
general definition of the τ̂ tensor given in [6, 7]:

τ̂ = Â
−1

0

(

C2 +

(

∂ξ0
∂t

)2

I +
∂ξi
∂Xj

∂ξi
∂Xk

AjAk

)

−1/2

(8.22)

where Ai = ÂiÂ
−1

0 , C = ĈÂ
−1

0 and ξi are the coordinates in the parent domain of
each element, and ξ0 refers to the time axis.

Remark 20 It is not the intention of the author to critisize a particular reference in
the available litarature. The large majority of stabilization operators adopts similar
expressions, so it is fair to say that the following example is prototypical of current
stabilization approaches to compressible flows.

In one dimension,

∂ξ0
∂t

=
2

∆t
(8.23)

∂ξi
∂Xj

∂ξi
∂Xk

AjAk =

(

2

∆X

)2

A2
1 (8.24)

Substituting (8.17)–(8.19) into (8.22), and recalling that in the current space-time
formulation ∂t|χŴ = 0, it can be obtained:
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−(L̂∗

SHŴ
h
) · τ̂ = (Â

T

0 ∂t|χŴ
h

+ Â
T

i ∂χi
Ŵ

h
)τ̂

= ∂XŴ
h
Â1τ̂ (8.25)

where, for an ideal gas,

Â1τ̂ =







− v
J
β β

J
0

v2(−3+γ)β
2J

−v(−2+γ)β
J

(γ−1)β
J

v(−2pγ+v2(2−3γ+γ2)ρ)β

2(γ−1)ρJ

(2pγ+v2(−3+5γ−2γ2)ρ)β

2(γ−1)ρJ
v(γ−1)β

J






(8.26)

β =
∆t

2
√

1 + α2
, α =

cs∆t

∆x
, ∆x = J∆X, cs =

√

γ
p

ρ
(8.27)

Depending on the value of v, the perturbation to the test function can assume a wide
range of values (v can also be negative, so that sign inversions can occur, particularly
problematic to stability). It is clear that this approach leads to observer-dependent
stabilization operators. Instead, in the case of the Galiean invariant approach,

Â1τ̂ =







0 β
J

0
0 0 γ−1

J
β

0 βc2s
(γ−1)J

0






(8.28)

independent of the velocity v.

8.1.5 The Eulerian limit

The standard approach is widely documented in the literature for Eulerian meshes,
and will be shown to be inconsistent with the Galilean principle.

8.1.5.1 Standard, non-invariant approach

Â
(NG)

0 =













1 0 0 0 0
v1 ρ 0 0 0
v2 0 ρ 0 0
v3 0 0 ρ 0
E ρv1 ρv2 ρv3 ρe,p













, (8.29)
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Ĉ
(NG)

=













0 0 0 0 0
−g1 0 0 0 0
−g2 0 0 0 0
−g3 0 0 0 0
−s −ρg1 −ρg2 −ρg3 0













, (8.30)

and, for i = 1, 2, 3,

Â
(NG)

i =





















vi ρδ1i ρδ2i ρδ3i 0
viv1 ρ(vi+v1δ1i) ρv1δ2i ρv1δ3i δ1i

viv2 ρv2δ1i ρ(vi+v2δ2i) ρv2δ3i δ2i

viv3 ρv3δ1i ρv3δ2i ρ(vi+v3δ3i) δ3i

viE ρviv1+ ρviv2+ ρviv3+ ρvie,p

(ρE+p (ρE+p (ρE+p +vi

−ρ2e,ρ)δ1i −ρ2e,ρ)δ2i −ρ2e,ρ)δ3i





















(8.31)

Remark 21 Although non-invariant, the previous Jacobians and their variations
with different sets of variables are currently used in the large majority of SUPG-
stabilized finite element methods for compressible flow applications, with potentially
very dangerous consequences on the reliability of the results.

Remark 22 As a justification for the inconsistencies found in the literature to date,
it is virtually impossible to discern whether a velocity term transforms correctly, if only

the Eulerian form of the equations is available, since w = F̂
−1

(v − v̂) = I(v − 0) =
v. The reverse approach is needed, in which first a consistent ALE formulation is
developed and then the Eulerian equations are derived as a limit.

8.1.5.2 Galilean invariant approach

Â
(Gal)

0 =













1 0 0 0 0
0 ρ 0 0 0
0 0 ρ 0 0
0 0 0 ρ 0
0 0 0 0 ρe,p













, Ĉ
(Gal)

=













0 0 0 0 0
−g1 0 0 0 0
−g2 0 0 0 0
−g3 0 0 0 0
−s 0 0 0 0













(8.32)

and, for i = 1, 2, 3,

Â
(Gal)

i =













vi ρδ1i ρδ2i ρδ3i 0
0 ρvi 0 0 δ1i

0 0 ρvi 0 δ2i

0 0 0 ρvi δ3i

0 (p−ρ2e,ρ)δ1i (p−ρ2e,ρ)δ2i (p−ρ2e,ρ)δ3i ρvie,p













(8.33)
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8.2 Conservation variables

Conservation variables are widely used in SUPG methods for aircraft design applica-
tions. Therefore, they are a very good candidate for the invariance analysis. Unfortu-
nately, casting the residuals in advective form is not a successful strategy in deriving
invariant Euler flux Jacobians. The reason for this problem has to be traced to the
particular structure of the conservation variables, which combine kinematic and ther-
modynamic quantities in their definition. As a starting point in the derivations, the
following identity will become very useful:

0 = ∂t|χÛ + ∂χi
Ĝi + Ẑ

= ∂t|χ(ĴU) + ∂χi
(wiĴU + Ĝ

L

i ) + Ẑ

= Ĵ∂t|χU + ĴU∇x · v̂ + ∂χi
(F̂−1

ij cj ĴU + Ĝ
L

i ) + Ẑ

= Ĵ∂t|χU + ĴU∇x · v̂ + ∂χi
(Ĵ F̂−T

ji cjU + Ĝ
L

i ) + Ẑ

= Ĵ∂t|χU + ĴU∇x · v̂ + ∂χi
(cofF̂jicjU + Ĝ

L

i ) + Ẑ

= Ĵ∂t|χU + ĴU∇x · v̂ +UcofF̂ji∂χi
cj + cofF̂jicj∂χi

U + ∂χi
Ĝ

L

i + Ẑ

= Ĵ∂t|χU + ĴU∇x · v̂ + ĴU∇x · c+ Ĵwi∂χi
U + ∂χi

Ĝ
L

i + Ẑ

= Ĵ∂t|χU + ĴU∇x · v + Ĵwi∂χi
U + ∂χi

Ĝ
L

i + Ẑ

= Ĵ∂t|χU + Ĵwi∂χi
U +UcofF̂ij∂χj

vi + ∂χi
Ĝ

L

i + Ẑ

= Ĵ∂t|χU + Ĵw · ∇χU + ĴU∇x · v + ∂χi
Ĝ

L

i + Ẑ (8.34)

where the term ∂χi
Ĝ

L

i can be readily computed, using again the Piola identity:

∂χi
Ĝ

L

i = ∂χi















0

p cofF̂1i

p cofF̂2i

p cofF̂3i

vjp cofF̂ji















=















0

∂χi
p cofF̂1i

∂χi
p cofF̂2i

∂χi
p cofF̂3i

(p ∂χi
vj + vj∂χi

p) cofF̂ji















(8.35)

The quasi-linear form of the system of equations for conservation variables can be
completed by deriving expressions for ∂χj

vi, and ∂χj
p. For the sake of simplicity,

and without lack of generality on the conclusions, the case of an ideal gas will be
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considered, for which:

vi =
Ui+1

U1

(8.36)

∂vi

∂χj

=
1

U1

∂Ui+1

∂χj

− Ui+1

U2
1

∂U1

∂χj

(8.37)

p = (γ − 1)

(

U5 −
1

2U1

∑

k=1

U2
k+1

)

(8.38)

∂p

∂χj
= (γ − 1)

(

∂U5

∂χj
+

1

2

3
∑

k=1

(

Uk+1

U1

)2
∂U1

∂χj
−

3
∑

k=1

Uk+1

U1

∂Uk+1

∂χj

)

(8.39)

e =
U5

U1

− 1

2

∑

k=1

(

Uk+1

U1

)2

(8.40)

∂e

∂χj

=
1

U1

∂U5

∂χj

− U5

U2
1

∂U1

∂χj

− Uk+1

U2
1

∂Uk+1

∂χj

+
3
∑

k=1

Uk+1Uk+1

U3
1

∂U1

∂χj

(8.41)

κ =
1

2

∑

k=1

(

Uk+1

U1

)2

(8.42)

where κ = 1
2
v · v is the kinetic energy per unit mass.

8.2.1 The “standard”, non-invariant approach

The quasi-linear vector form reads

Â0 ∂t|χU + Âi(U) ∂χi
U + Ĉ(U) U = 0 (8.43)

with

Â
(NG)

0 = ĴI5×5, Ĉ
(NG)

= Ĵ













0 0 0 0 0
−g1 0 0 0 0
−g2 0 0 0 0
−g3 0 0 0 0
−s −g1 −g2 −g3 0













, (8.44)
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and, for i = 1, 2, 3,

Â
(NG)

i =













































Ĵwi − Ucof
i

U1
cofF̂1i cofF̂2i cofF̂3i 0

−U2Ucof
i

U2
1

Ĵwi + U2

U1
cofF̂1i

U2

U1
cofF̂2i

U2

U1
cofF̂3i (γ−1)cofF̂1i

+(γ−1)κcofF̂1i − (γ−1)U2

U1
cofF̂1i − (γ−1)U3

U1
cofF̂1i − (γ−1)U4

U1
cofF̂1i

−U3Ucof
i

U2
1

U3

U1
cofF̂1i Ĵwi + U3

U1
cofF̂2i

U3

U1
cofF̂3i (γ−1)cofF̂2i

+(γ−1)κcofF̂2i − (γ−1)U2

U1
cofF̂2i − (γ−1)U3

U1
cofF̂2i − (γ−1)U4

U1
cofF̂2i

−U4Ucof
i

U2
1

U4

U1
cofF̂1i

U4

U1
cofF̂2i Ĵwi + U4

U1
cofF̂3i (γ−1)cofF̂3i

+(γ−1)κcofF̂3i − (γ−1)U2

U1
cofF̂3i − (γ−1)U3

U1
cofF̂3i − (γ−1)U4

U1
cofF̂3i

−U5Ucof
i

U2
1

U5

U1
cofF̂1i

U5

U1
cofF̂2i

U5

U1
cofF̂3i Ĵwi+

(γ−1)κUcof
i

U1
− (γ−1)U2Ucof

i

U2
1

− (γ−1)U3Ucof
i

U2
1

− (γ−1)U4Ucof
i

U2
1

(γ−1)Ucof
i

U1

−pUcof
i

U2
1

+ p
U1

cofF̂1i + p
U1

cofF̂2i + p
U1

cofF̂3i













































(8.45)
where U cof

i =
∑3

k=1 Uk+1cofF̂ki.

Remark 23 It is easy to realize that the Euler flux Jacobians contain a large number
of terms dependent on the velocity components vi = Ui+1/U1. Therefore, a single Euler
flux Jacobian or an arbitrary combination of Euler flux Jacobians are not necessarily
invariant.

8.2.2 Non-invariant Jacobians for the advective form

Due to the structure of the conservation variable vector, casting the system of equa-
tions in the advective form (8.12)–(8.14) does not yield invariant Jacobians. In fact,

Â
(Adv)

0 = Ĵ













1 0 0 0 0
−U2

U1
1 0 0 0

−U3

U1
0 1 0 0

−U4

U1
0 0 1 0

−U5

U1
+2κ −U2

U1
−U3

U1
−U4

U1
1













, Ĉ
(Adv)

= Ĵ













0 0 0 0 0
−g1 0 0 0 0
−g2 0 0 0 0
−g3 0 0 0 0
−s 0 0 0 0













,

(8.46)
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and, for i = 1, 2, 3,

Â
(NG)

i =







































Ĵwi − Ucof
i

U1
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U2

U1
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U1
cofF̂1i

−Ĵwi
U3
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U1
cofF̂2i

−Ĵwi
U4
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− (γ−1)U2
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cofF̂3i − (γ−1)U3

U1
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U1
cofF̂3i
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(

−U5

U1
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−Ĵwi
U2
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−Ĵwi

U3
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−Ĵwi

U4
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−pUcof
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U2
1
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U1

cofF̂2i + p
U1

cofF̂3i







































(8.47)

Remark 24 Even the advective form of the equations generates Jacobians which are
not invariant, since they contain components of the material velocity vector v. This,
by all means, does not imply that it is not possible to cast the quasi-linear form of
the ALE Euler equations in invariant form, but a more complicated structure might
be required. For the time being, this form is still to be found.

Remark 25 Similar considerations may apply in the case of the entropy variables,
which possess a structure very similar to the one of conservation variables.
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Chapter 9

Summary

An extended invariance analysis of stabilized methods for compressible and incom-
pressible flows has been presented in the general ALE context. It was shown that
most of the stabilization operators designed to date for compressible flow applications
on Eulerian meshes do not satisfy the principle of Galilean invariance. It has been
argued that this is both a physical and numerical flaw, since a non-invariant Petrov-
Galerkin test space can have direct consequences on the stability properties of SUPG
methods.

Given the disastrous results documented in [16] for the Lagrangian limit, it is the
opinion of the author that at least a “reasonable doubt” on the correctness of the
stabilization techniques lacking invariance has to be raised. It was shown that, for
the density-pressure, the pressure primitive, and the density-internal energy vairables,
a simple manipulation of the quasi-linear form of the equations of motion leads to
Galilean invariant formulations. This approach also has the advantage of a significant
reduction in the computational cost of the stabilization operator. The reliability of
the new approach under severe conditions was proven in [17], where diagonal τ tensors
were used to stabilize shocks of strength in excess of Mach 10,000,000.

More work is needed to develop Galilean invariant SUPG operators for the con-
servation and entropy variables. Also, additional examples, in which lack of Galilean
invariance leads to catastrophic results, need to be found and investigated, to broaden
the discussion and further confirm the importance of the issue.

As a final comment, when considering complex compressible flow applications,
conformity with physics principles in the design of stabilization and subgrid-scale
operators appears to be one of the not so many guidelines available to the scientist.
In this context, the price to be paid by neglecting the Galilean sanity check may
be much greater than expected. The effects of invariance inconsistencies are usually
difficult to isolate and track a posteriori, in large-scale industrial implementations.
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Appendix A

Quasi-linear forms and invariance:
additional sets of solution variables

A.1 Pressure primitive variables

A quasi-linear form of the Euler equations using pressure primitive variables (Y =
[e vT p]T ) is now derived. In the literature, the temperature T is tipically used in
place of the internal energy e (see, in the case of ideal gases, Hauke and Hughes [6, 7],
and Hauke [5]). However, the classical expressions for the Euler Jacobians can be
recovered noticing that, for an ideal gas, e = cvT , where cv is the specific heat
for an isocoric thermodynamic transformation. Also in the case of pressure primitive
variables, the derivations in (8.34) become very useful, since the ALE geometric terms
are not under the derivative symbol. The following manipulations will also be used:

∂•U = ∂•













ρ
ρv1

ρv2

ρv3

ρE


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



= ∂•













ρ
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






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























= ρ


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




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0
∂•v1

∂•v2

∂•v3

vk∂•vk + ∂•e













+ ∂•ρ













1
v1

v2

v3

E













(A.1)

where either ∂• = ∂t|χ or ∂• = ∂χj
, and ∂•ρ = ρ,e∂•e + ρ,p∂•p, with ρ,e = ∂ρ

∂e

∣

∣

p
, and

ρ,p = ∂ρ
∂p

∣

∣

∣

e
.
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A.1.1 The “standard”, non-invariant approach

Defining f̃ρ = ρ(e, p)/e, the quasi-linear vector form reads

Â0 ∂t|χY + Âi(Y ) ∂χi
Y + Ĉ(Y ) Y = 0 (A.2)

with

Â
(NG)

0 = Ĵ













ρ,e 0 0 0 ρ,p

v1ρ,e ρ 0 0 v1ρ,p

v2ρ,e 0 ρ 0 v2ρ,p

v3ρ,e 0 0 ρ v3ρ,p

Eρ,e+ρ ρv1 ρv2 ρv3 Eρ,p













, (A.3)

Ĉ
(NG)

= Ĵ













0 0 0 0 0

−g1f̃ρ 0 0 0 0
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−g3f̃ρ 0 0 0 0

−sf̃ρ −ρg1 −ρg2 −ρg3 0













, (A.4)

and, for i = 1, 2, 3,

Â
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






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
















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Ĵwiv2ρ,e Ĵρwi+ Ĵwiv2ρ,p
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


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






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













(A.5)

Remark 26 These definitions of the Jacobians of the Euler fluxes are not invariant,
since they contain components of the velocity vector v. The conclusions to be drawn
are therefore virtually identical to the previous case of density-pressure variables.

52



A.1.2 Galilean invariant approach

Casting the Euler equations in advective form, the following set of invariant flux
Jacobians is readily obtained:

Â
(Gal)

0 = Ĵ












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−g2f̃ρ 0 0 0 0

−g3f̃ρ 0 0 0 0
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
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, (A.6)

and, for i = 1, 2, 3,
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(A.7)

A.1.3 The Lagrangian limit

A.1.3.1 Standard, non-invariant approach

Â
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
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Jρ,e 0 0 0 Jρ,p

Jv1ρ,e ρ0 0 0 Jv1ρ,p

Jv2ρ,e 0 ρ0 0 Jv2ρ,p

Jv3ρ,e 0 0 ρ0 Jv3ρ,p

JEρ,e+ρ0 ρ0v1 ρ0v2 ρ0v3 JEρ,p













, (A.8)

Ĉ
(NG)

=













0 0 0 0 0

−Jg1f̃ρ 0 0 0 0

−Jg2f̃ρ 0 0 0 0

−Jg3f̃ρ 0 0 0 0

−Jsf̃ρ −ρ0g1 −ρ0g2 −ρ0g3 0













, (A.9)

and, for i = 1, 2, 3,

Â
(NG)

i =













0 ρ cofF1i ρ cofF2i ρ cofF3i 0
0 ρv1cofF1i ρv1cofF2i ρv1cofF3i cofF1i

0 ρv2cofF1i ρv2cofF2i ρv2cofF3i cofF2i

0 ρv3cofF1i ρv3cofF2i ρv3cofF3i cofF3i

0 (ρE+p)cofF̂1i (ρE+p)cofF̂2i (ρE+p)cofF̂3i cofF̂kivk













(A.10)
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A.1.3.2 Galilean invariant approach

Â
(Gal)

0 =













J 0 0 0 0
0 ρ0 0 0 0
0 0 ρ0 0 0
0 0 0 ρ0 0
ρ0 0 0 0 0













, Ĉ
(Gal)

=













0 0 0 0 0

−Jg1f̃ρ 0 0 0 0

−Jg2f̃ρ 0 0 0 0

−Jg3f̃ρ 0 0 0 0

−Jsf̃ρ 0 0 0 0













(A.11)

and, for i = 1, 2, 3,

Â
(Gal)

i =













0 ρ cofF1i ρ cofF2i ρ cofF3i 0
0 0 0 0 cofF1i

0 0 0 0 cofF2i

0 0 0 0 cofF3i

0 p cofF1i p cofF2i p cofF3i 0













(A.12)

A.1.4 The Eulerian limit

A.1.4.1 Standard, non-invariant approach

Â
(NG)

0 =













ρ,e 0 0 0 ρ,p

v1ρ,e ρ 0 0 v1ρ,p

v2ρ,e 0 ρ 0 v2ρ,p

v3ρ,e 0 0 ρ v3ρ,p

Eρ,e+ρ ρv1 ρv2 ρv3 Eρ,p













, (A.13)

Ĉ
(NG)

=













0 0 0 0 0

−g1f̃ρ 0 0 0 0

−g2f̃ρ 0 0 0 0

−g3f̃ρ 0 0 0 0

−sf̃ρ −ρg1 −ρg2 −ρg3 0













, (A.14)

and, for i = 1, 2, 3,

Â
(NG)

i =

















viρ,e ρδ1i ρδ2i ρδ3i viρ,p

viv1ρ,e ρ(vi+v1δ1i) ρv1δ2i ρv1δ3i δ1i + viv1ρ,p

viv2ρ,e ρv2δ1i ρ(vi+v2δ2i) ρv2δ3i δ2i + viv2ρ,p

viv3ρ,e ρv2δ1i ρv3δ2i ρ(vi+v3δ3i) δ3i + viv3ρ,p

vi(Eρ,e+ρ) ρviv1+ ρviv2+ ρviv3+ viEρ,p

(ρE + p)δ1i (ρE + p)δ2i (ρE + p)δ3i +vi

















(A.15)
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A.1.4.2 Galilean invariant approach

Â
(Gal)

0 =













ρ,e 0 0 0 ρ,p

0 ρ 0 0 0
0 0 ρ 0 0
0 0 0 ρ 0
ρ 0 0 0 0













, Ĉ
(Gal)

=













0 0 0 0 0

−g1f̃ρ 0 0 0 0

−g2f̃ρ 0 0 0 0

−g3f̃ρ 0 0 0 0

−sf̃ρ 0 0 0 0













(A.16)

and, for i = 1, 2, 3,

Â
(Gal)

i =













viρ,e ρδ1i ρδ2i ρδ3i viρ,p

0 ρvi 0 0 δ1i

0 0 ρvi 0 δ2i

0 0 0 ρvi δ3i

ρvi p δ1i p δ2i p δ3i 0













(A.17)

A.2 Density-internal energy variables

It is of interest, especially for the community developing hydrocodes, the set of vari-
ables Y = [ρ vT e]T ). The derivations of the non-invariant and invariant Jacobians
for the quasi-linear vector form

Â0 ∂t|χY + Âi(Y ) ∂χi
Y + Ĉ(Y ) Y = 0 (A.18)

are reported below. Also in this case, the invariant approach was obtained using the
advective form of the Euler equations.

A.2.1 The “standard”, non-invariant approach

Â
(NG)

0 =















Ĵ 0 0 0 0

Ĵv1 Ĵρ 0 0 0

Ĵv2 0 Ĵρ 0 0

Ĵv3 0 0 Ĵρ 0

ĴE Ĵρv1 Ĵρv2 Ĵρv3 Ĵρ















, (A.19)

Ĉ
(NG)

=















0 0 0 0 0

−Ĵg1 0 0 0 0

−Ĵg2 0 0 0 0

−Ĵg3 0 0 0 0

−Ĵs −Ĵρg1 −Ĵρg2 −Ĵρg3 0















, (A.20)
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and, for i = 1, 2, 3,

Â
(NG)

i =

































Ĵwi ρ cofF̂1i ρ cofF̂2i ρ cofF̂3i 0

p,ρ cofF̂1i ρv1cofF̂1i ρv1cofF̂2i ρv1cofF̂3i p,e cofF̂1i

+Ĵwiv1 +Ĵρwi

p,ρ cofF̂2i ρv2cofF̂1i ρv2cofF̂2i ρv2cofF̂3i p,e cofF̂2i

+Ĵwiv2 +Ĵρwi

p,ρ cofF̂3i ρv3cofF̂1i ρv3cofF̂2i ρv3cofF̂3i p,e cofF̂3i

+Ĵwiv3 +Ĵρwi

ĴwiE+ Ĵρwiv1+ Ĵρwiv2+ Ĵρwiv3+ Ĵρwi+

p,ρcofF̂kivk (ρE (ρE (ρE p,ecofF̂kivk+p)cofF̂1i +p)cofF̂2i +p)cofF̂3i

































(A.21)

A.2.2 Galilean invariant approach

Â
(Gal)

0 =















Ĵ 0 0 0 0

0 Ĵρ 0 0 0

0 0 Ĵρ 0 0

0 0 0 Ĵρ 0

0 0 0 0 Ĵρ















, Ĉ
(Gal)

=















0 0 0 0 0

−Ĵg1 0 0 0 0

−Ĵg2 0 0 0 0

−Ĵg3 0 0 0 0

−Ĵs 0 0 0 0















, (A.22)

and, for i = 1, 2, 3,

Â
(Gal)

i =















Ĵwi ρ cofF̂1i ρ cofF̂2i ρ cofF̂3i 0

p,ρ cofF̂1i Ĵρwi 0 0 p,e cofF̂1i

p,ρ cofF̂2i 0 Ĵρwi 0 p,e cofF̂2i

p,ρ cofF̂3i 0 0 Ĵρwi p,e cofF̂3i

0 p cofF̂1i p cofF̂2i p cofF̂3i Ĵρwi















(A.23)
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